I valori della somma su tutti i primi di 1 / (pn * log(p)) per n da 1 a 80

La tabella seguente mostra i valori approssimati di Somma sui numeri primi di 1/ (p^n * log(p)) per n da 1 a 80 (R.J. Mathar, 2018).

n

Somma sui numeri primi di 1/ (p^n * log(p))

1

1.6366163233512608685696580039218636711815970761312930586003049197813399744679469865470

2

0.5077821878591993187743751

3

0.2212033403969814969599433

4

0.1026654782331571962664758

5

0.04906357474830439568004180

6

0.02383519825459824737569112

7

0.01169586557789515115400634

8

0.005775944595316604352784204

9

0.002864339771659922115926198

10

0.001424362320209387639441021

11

0.0007095922515383712411613441

12

0.0003539358269254206683875757

13

0.0001766816740292220402778692

14

0.00008824552821042831521626792

15

0.00004409101522588177584140913

16

0.00002203492877680910955374197

17

0.00001101393893146441713313451

18

0.000005505794477350959773416061

19

0.000002752505608607939317868454

20

0.000001376122267484767801052807

21

0.0000006880176227754180030145763

22

0.0000003439943079930986522426868

23

0.0000001719923195838631569242761

24

0.00000008599454833146940100459182

25

0.00000004299673701433343948018079

26

0.00000002149818945711678602970514

27

0.00000001074903504529183534309235

28

0.000000005374497628240414337653354

29

0.000000002687242182655042356063437

30

0.000000001343618880839800136417081

31

0.0000000006718087035907931625220498

32

0.0000000003359041061857209670487929

33

0.0000000001679519712229739495683419

34

0.00000000008397595832152586427576250

35

0.00000000004198797006410944212865828

36

0.00000000002099398199983693375971239

37

0.00000000001049698998917921298463855

38

0.000000000005248494657676523568505703

39

0.000000000002624247216533901151232704

40

0.000000000001312123570832163766259737

41

0.0000000000006560617729378196270076685

42

0.0000000000003280308823094890641957663

43

0.0000000000001640154397682709495417266

44

0.00000000000008200771942197761402811764

45

0.00000000000004100385955693618678833822

46

0.00000000000002050192972711721998996784

47

0.00000000000001025096484644165219445795

48

0.000000000000005125482417515173497228539

49

0.000000000000002562741206855702548649103

50

0.000000000000001281370602793889874343158

51

0.0000000000000006406853011856244705125138

52

0.0000000000000003203426505223720797035150

53

0.0000000000000001601713252377059880008995

54

0.00000000000000008008566261102631005017492

55

0.00000000000000004004283130290426037499809

56

0.00000000000000002002141565058249863746971

57

0.00000000000000001001070782500137213539183

58

0.000000000000000005005353912404060339914924

59

0.000000000000000002502676956169821594030469

60

0.000000000000000001251338478074174605039571

61

0.0000000000000000006256692390335085718612310

61

0.0000000000000000003128346195155613757110974

63

0.0000000000000000001564173097573830511157093

64

0.00000000000000000007820865487855897997790822

65

0.00000000000000000003910432743923530812897196

66

0.00000000000000000001955216371960292677782526

67

0.000000000000000000009776081859796554293359059

68

0.000000000000000000004888040929896640781495005

69

0.000000000000000000002444020464947774935685995

70

0.000000000000000000001222010232473705649489161

71

0.0000000000000000000006110051162367922186266353

72

0.0000000000000000000003055025581183759072740025

73

0.0000000000000000000001527512790591812196238962

74

0.00000000000000000000007637563952958836514091310

75

0.00000000000000000000003818781976479343434677822

76

0.00000000000000000000001909390988239646776549633

77

0.000000000000000000000009546954941198150746783904

78

0.000000000000000000000004773477470599047661403866

79

0.000000000000000000000002386738735299514593372571

80

0.000000000000000000000001193369367649754217576498