Don't take life too seriously: it's just a temporary situation

Indice

  1. 1. Pagina principale
  2. 2. Occorrenze in teoria dei numeri
  3. 3. Occorrenze in geometria
  4. 4. Occorrenze in calcolo delle probabilità e statistica
  5. 5. Serie
  6. 6. Prodotti
  7. 7. Limiti
  8. 8. Integrali
  9. 9. Altre formule
  10. 10. Storia del calcolo di π, primo periodo
  11. 11. Storia del calcolo di π, secondo periodo
  12. 12. Storia del calcolo di π, terzo periodo
  13. 13. Il calcolo di π
  14. 14. Calcolo di cifre singole
  15. 15. Approssimazioni
  16. 16. Approssimazioni scadenti
  17. 17. La quadratura del cerchio
  18. 18. Aiuti mnemonici

Altre formule che coinvolgono π:

Formula di Viète per il calcolo di 2 / π (FrançoisViète); una dimostrazione rigorosa di questa formula si ebbe però solo nel 1892 (Rudio);

Formula per il calcolo di π / 2;

Formula per il calcolo di π;

 

Alcune ricorrenze connesse a π:

Valore iniziale della ricorrenza, Formula della ricorrenza, Formula per il calcolo di π basata sul limite della ricorrenza;

a0 = 1, Formula della ricorrenza, 4 / π come limite della ricorrenza;

a0 = 2,Valore iniziale della ricorrenza , Formula della ricorrenza, π come limite della ricorrenza;

a0 = 1, Formula della ricorrenzaFormula per il calcolo di π basata sul limite della ricorrenza (S.C. Woon, 1995).

 

Una ricorrenza notevole, non dimostrata, ma la cui validità sembra sperimentalmente confermata, è: x0 = 0; Formula della ricorrenza, dove {x} indica la parte frazionaria di xMassimo intero non superiore a x è l’n-esima cifra di π – 3 in base 16.

 

Altre ricorrenze particolarmente efficienti si trovano nella parte sulla storia del calcolo di π, terzo periodo.

 

Jabotinski e Erdös scoprirono il seguente curioso esempio: si inizia con un intero positivo n e si arrotonda al minimo multiplo superiore di n – 1, poi si arrotonda il risultato al minimo multiplo superiore di n – 2 e si prosegue, fino al più vicino multiplo di 2. Per esempio, iniziando con n = 10 si passa al minimo multiplo superiore di 9, cioè 18, poi al minimo multiplo superiore di 8, cioè 24, poi a 28, 30, 30, 32, 33, 34. Il numero f(n) così ottenuto soddisfa Formula per il calcolo di π basata sul limite della successione.

 

Dopo tante formule corrette, ne do anche due sbagliate:

  •  Formula errata per il calcolo di π (Gérard Maze e Lorenz Minder, 2008) differisce da π per circa 0.5389144826 • 10–11;

  •  Formula errata per il calcolo di π / 8 (David H. Bailey e Jonathan M. Borwein, “Future Prospects for Computer-Assisted Mathematics”, 2005) differisce da π / 8 solo dopo 42 cifre decimali;

  • Formula errata per il calcolo di π (Jonathan Michael Borwein e Peter Benjamin Borwein, “Strange Series and High Precision Fraud”, The American Mathematical Monthly, Vol. 99, n. 7, agosto – settembre 1992, pag. 622 – 640). Il valore che si ottiene non è esattamente π, ma coincide per almeno 42 miliardi di cifre decimali.

 

Vedi anche

Numeri affamati.

Bibliografia

  • Avellino, Mario Rosario;  Pi greco una storia infinita, Castellammare di Stabia, Micro media s.r.l., 2012 -

    Un testo divulgativo di facile lettura, per studenti delle medie superiori e appassionati in genere.

  • Bailey, D.H.;  Borwein, Peter Benjamin;  Plouffe, Simon;  "On the Rapid Computation of Various Polylogarithmic Constants" in Mathematics of Computation, 1997, vol. 66, pag. 903 – 913.
  • Balzarotti, Giorgio;  Lava, Paolo Pietro;  103 Curiosità matematiche, Milano, Hoepli, 2010.
  • Beckmann, Petr;  A History of π, New York, St. Martin’s Press, 1971 -

    Una semplice e divertente storia di π.

  • Bellos, Axel;  Il meraviglioso mondo dei numeri, Torino, Einaudi, 2011 -

    Trad. di Alex’s Adventures in Numberland. Dispatches from the Wonderful World of Mathematics, 2010.

  • Berggren, Lenhart;  Borwein, Jonathan Michael;  Borwein, Peter Benjamin;  Pi: a Source Book, Springer-Verlag, 1997 -

    Tutto su π, ma non solo. Contiene anche un articolo di J. Todd sulla costante della lemniscata e un articolo di David A. Cox sulla media aritmetico-geometrica di Gauss.

  • Blattner, David;  The Joy of Pi, New York, Walker & Co, 1997 -

    Ristampato da Penguin Books, 1998.

  • Boese, Alex;  The Museum of Hoaxes, Penguin Group, 2002 -

    Una divertente raccolta di truffe, scherzi, invenzioni assurde che hanno mietuto vittime anche illustri.

  • Borwein, Jonathan Michael;  Borwein, Peter Benjamin;  Pi and AGM, New York, John Wiley & Sons, 1987.
  • Cresci, Luciano;  Le curve matematiche, Milano, Hoepli, 2005.
  • Derbyshire, John;  Prime Obsession, Washington D.C., Joseph Henry Press, 2003.
  • Dunlap, Richard A.;  The Golden ratio and Fibonacci Numbers, Singapore, World Scientific Publishing Co., 1997.
  • Dörrie, Heinrich;  100 Great Problems of Elementary Mathematics, New York, Dover, 1965 -

    Una traduzione inglese della quinta edizione di Triumph der Mathematik: Hundert berühmte Probleme aus zwei Jahrtausenden mathematischer Kultur, Würzburg, Physica Verlag, 1958. La prima edizione, ormai introvabile, risale al 1932.

  • Eves, Howard W.;  Mathematical Circles, Mathematical Association of America, vol. III, 2003 -

    Una stupenda raccolta di aneddoti a sfondo matematico, pubblicati inizialmente con i titoli Mathematical Circles Adieu (Prindle, Weber and Schmidt Inc., 1977) e Return to Mathematical Circles (Prindle, Weber and Schmidt Inc., 1988).

  • Gardner, Martin;  "Giochi matematici" in Le Scienze, Milano, n. 137, gennaio 1980, pag. 102 – 105 -

     

  • Gardner, Martin;  Enigmi e giochi matematici 6, Firenze, Sansoni, 1969 -

    Traduzione di Martin Gardner’s New Mathematical Diversions from Scientific American, New York, Simon and Schuster, 1966.

  • Greco, Pietro;  Storia di π, Roma, Carocci editore, 2016.
  • Higgins, Peter M.;  Divertirsi con la matematica, Bari, Ediz. Dedalo, 1999 -

    trad. di Mathematics for the Curious, Oxford University Press, 1998. Raccolta di fatti e curiosità matematiche di facile e gradevole lettura.

  • Hénin, Silvio;  "La legge del pi greco nello stato dell’Indiana" in Le Scienze, Milano, n. 449, gennaio 2006, pag. 118.
  • Kanigel, Robert;  The Man who Knew Infinity, Charles Scribner’s Sons, 1991 -

    Un’ottima biografia di Ramanujan.

  • Koshy, Thomas;  Fibonacci and Lucas Numbers with Applications, New York, John Wiley & Sons, 2001.
  • Maor, Eli;  e, The Story of a Number, Princeton, Princeton University Press, 1994.
  • Nahin, Paul J.;  Duelling Idiots and Other Probability Puzzles, Princeton, Princeton University Press, 2000.
  • Odifreddi, Piergiorgio;  "Colpi di fortuna (al cerchio)" in Le Scienze, Milano, n. 475, marzo 2008, pag. 23.
  • Odifreddi, Piergiorgio;  "Meandri matematiciali" in Le Scienze, Milano, n. 436, dicembre 2004, pag. 109.
  • Pickover, Clifford A.;  A Passion for Mathematics, Hoboken, John Wiley & Sons, 2005.
  • Pickover, Clifford A.;  The Wonders of Numbers, New York, Oxford University Press, 2001.
  • Ribenboim, Paulo;  Catalan’s Conjecture, Academic Press, 1994.
  • Stewart, Ian;  Professor Stewart’s Cabinet of Mathematical Curiosities, Basic Books, 2009.
  • Stillwell, John;  Yearning for the Impossible, A.K. Peters, 2006.
  • Wells, David;  Prime Numbers, John Wiley & Sons, 2005 -

    Una miniera di informazioni sui numeri primi.

  • Wells, David;  The Penguin Book of Curious and Interesting Mathematics, Londra, Penguin Books, 1997.
  • Yaglom, A.M.;  Yaglom, I.M.;  Challenging Mathematical Problems with Elementary Solutions, New York, Dover, 1987 -

    Traduzione dal russo di Neelementarnye Zadachi v Elementarnom Izlozhenii (Problemi non elementari e soluzioni elementari), Mosca, Ist. Governativo di stampa per la letteratura tecnico-teorica, 1954. Una splendida raccolta di problemi, generalmente non facili, comparsa per la prima volta in occidente nel 1964 (S. Francisco, Holden-Day Inc., 1964).

Contattami

Potete contattarmi al seguente indirizzo bitman[at]bitman.name per suggerimenti o segnalazioni d'errori relativi a questo articolo.