Don't take life too seriously: it's just a temporary situation

Indice

  1. 1. Pagina principale
  2. 2. Formule
  3. 3. Valori e proprietà
  4. 4. Espressione di interi come somma di numeri triangolari

Ogni intero positivo si può esprimere come somma di 3 numeri triangolari (la prima dimostrazione nota è di Gauss, nel 1796, ma Fermat aveva asserito d’aver dimostrato il teorema oltre un secolo prima).

 

Sono state compiute varie ricerche sul numero tk(n) di rappresentazioni di n come somma di k numeri triangolari, anche nulli, considerando distinte le permutazioni degli addendi e sul numero pk(n) di partizioni di n in k numeri triangolari anche nulli, non considerando distinte le partizioni che differiscono per una permutazione degli addendi

Per esempio, t3(30) = 13, perché vi sono le seguenti rappresentazioni di 30:

  • 28 + 1 + 1,

  • 1 + 28 + 1,

  • 1 + 1 + 28,

  • 21 + 6 + 3,

  • 21 + 3 + 6,

  • 6 + 21 + 3,

  • 6 + 3 + 21,

  • 3 + 21 + 6,

  • 3 + 6 + 21,

  • 15 + 15 + 0,

  • 15 + 0 + 15,

  • 0 + 15 + 15,

  • 10 + 10 + 10.

Invece p3(30) = 4, perché vi sono le seguenti partizioni di 30:

  • 28 + 1 + 1,

  • 21 + 6 + 3,

  • 15 + 15 + 0,

  • 10 + 10 + 10.

 

Non si conosce una formula generale semplice per tk(n), ma se ne conoscono per vari casi particolari. Ramanujan trovò formule per calcolare tk(n) per k pari.

 

Michael D. Hirschhorn e James A. Sellers dimostrarono nel 1996 che:

  • p3(27n + 12) = 3p3(3n + 1) e la stessa relazione vale se si considerano solo le partizioni in numeri triangolari distinti;

  • t3(27n + 12) = 3t3(3n + 1);

  • t3(27n + 21) = 5y3(3n + 2);

  • t3(81n + 3) = 4t3(9n);

  • t3(81n + 57) = 4t3(9n + 6);

  • t3(3n + 1) è uguale al numero di rappresentazioni di 24n + 11 come somma di tre quadrati dispari;

  • t3(27n + 12) è uguale al numero di rappresentazioni di 216n + 99 come somma di tre quadrati dispari.

 

E’ stato dimostrato che t2(n) > 0, ossia n è rappresentabile come somma di 2 numeri triangolari, se e solo se 2(4n + 1) è somma di due quadrati (necessariamente dispari) e quindi è il prodotto di un quadrato per una potenza di 2 e per un numero che ha solo fattori primi della forma 4k + 1 (v. quadrati). Pertanto se tra i fattori primi di 8n + 2 ve n’è uno della forma 4k + 3 elevato a una potenza con esponente dispari, n non è rappresentabile come somma di due soli numeri triangolari.

 

J.A. Ewell dimostrò nel 1992 che t2(n) = d1(4n + 1) – d3(4n + 1), dove dk(n) è il numero di divisori di n congruenti a k modulo 4.

 

Ken Ono, Sinai Robins e Patrick T. Wah dimostrarono vari teoremi sul numero di rappresentazioni dei numeri naturali come somma di numeri triangolari, tra i quali i seguenti:

  • tk(n) è uguale al numero di rappresentazioni di 8n + k come somma di k quadrati dispari;

  • Formula per il calcolo di t2(n) e Formula per il calcolo di t3(n), dove le potenze di 2 a denominatore derivano dal fatto che in r2(n) si considerano tutte le combinazioni di segni delle basi dei quadrati (v. funzione rk);

  • Formula per il calcolo di t6(n), dove χ(n) = 1, se n ≡ 1 mod 4, χ(n) = –1, se n ≡ 3 mod 4;

  • Formula per il calcolo di t8(n), dove la somma va calcolata sui divisori d di n + 1 tali che (n + 1) / d sia dispari;

  • Formula per il calcolo di t24(n), dove la somma va calcolata sui divisori d di n + 3 tali che (n + 3) / d sia dispari;

  • Formula per il calcolo di t24(p^(k+1) – 3), per p primo.

 

t4(n) = σ(2n + 1) (Legendre). Per esempio, σ(25) = 31 e 12 si può esprimere in 31 modi come somma di 4 numeri triangolari:

  • 10 + 1 + 1 + 0 (12 permutazioni degli addendi);

  • 6 + 6 + 0 + 0 (6 permutazioni degli addendi);

  • 6 + 3 + 3 + 0 (12 permutazioni degli addendi);

  • 3 + 3 + 3 + 3 (1 permutazione degli addendi).

 

I quadrati che si possono esprimere come somma di 3 numeri triangolari consecutivi si ricavano dalla ricorrenza an = 9an – 1 + 4bn – 1 + 2, bn = 2an – 1 + bn – 1 + 1, iniziando con a0 = 0, b0 = 1 o con a0 = 1, b0 = 1: nelle due sequenze vale Tan – 1TanTan + 1 = (an + bn)2 (Tom Beldon e Tony Gardiner, 2002). Per esempio, nel primo caso abbiamo a1 = 6, b1 = 2 e T5 + T6 + T7 = 15 + 21 + 28 = 64 = (6 + 2)2 e nel secondo caso abbiamo a1 = 15, b1 = 4 e T14 + T15 + T16 = 105 + 120 + 136 = 361 = (15 + 4)2.

Le soluzioni possono anche essere trovate prendendo Formula per il calcolo di n o Formula per il calcolo di n, per qualsiasi intero positivo k, quindi calcolando Formula per il calcolo di m: in questo caso Tm – 1 + Tm + Tm + 1 = n2.

 

I quadrati che si possono esprimere come somma di 4 numeri triangolari consecutivi si ricavano dalle formule Formula per il calcolo di m e Formula per il calcolo di n per qualsiasi intero positivo k; in questo caso Tm – 2 + Tm – 1 + Tm + Tm + 1 = n2. Per esempio, per k = 1 abbiamo m = 7 e n = 10 e T5 + T6 + T7 + T8 = 15 + 21 + 28 + 36 = 100 = 102.

 

Ogni quarta potenza maggiore di 1 si può esprimere come somma di due numeri triangolari in almeno due modi diversi: n4 = Tn2 – 1Tn2Tn2n – 1 + Tn2 + n – 1.

 

Eulero dimostrò nel 1756 che ogni numero primo si può esprimere come somma di un numero triangolare e un quadrato e come somma di un numero triangolare e il doppio di un altro.

 

Liouville dimostrò nel 1862 che esistono solo 7 combinazioni di interi a, b e c tali che ogni intero positivo si possa esprimere come aTx + bTy + cTz, con x, y e z interi anche nulli:

  • [ 1, 1, 1 ],

  • [ 1, 1, 2 ],

  • [ 1, 1, 4 ],

  • [ 1, 1, 5 ],

  • [ 1, 2, 2 ],

  • [ 1, 2, 3 ],

  • [ 1, 2, 4 ].

 

Nel 1862 Lebesgue e Réalis dimostrarono che ogni intero positivo può essere espresso come somma di due numeri triangolari e un quadrato.

Nel 2007 Zhi-Wei Sun generalizzò il teorema, dimostrando che esistono solo 15 combinazioni di interi a, b e c tali che ogni intero positivo si possa esprimere come aTx + bTy + cz2 con x, y e z interi anche nulli:

  • [ 1, 1, 1 ],

  • [ 1, 1, 2 ],

  • [ 1, 1, 4 ],

  • [ 1, 2, 1 ],

  • [ 1, 2, 2 ],

  • [ 1, 2, 3 ],

  • [ 1, 2, 4 ],

  • [ 1, 3, 1 ],

  • [ 1, 4, 1 ],

  • [ 1, 4, 2 ],

  • [ 1, 6, 1 ],

  • [ 1, 8, 1 ],

  • [ 2, 2, 1 ],

  • [ 2, 4, 1 ],

  • [ 2, 5, 1 ].

La terza combinazione dimostra che ogni intero positivo può essere espresso come somma di due numeri triangolari e un quadrato pari.

 

Eulero dimostrò che ogni intero positivo si può esprimere come somma di due quadrati e un numero triangolare.

B.W. Jone e G. Pall dimostrarono nel 1939 che ogni intero positivo può essere rappresentato come somma di un quadrato, un quadrato pari e un numero triangolare.

Nel 2007 Zhi-Wei Sun generalizzò il teorema, dimostrando che esistono solo 10 combinazioni di interi a, b e c tali che ogni intero positivo si possa esprimere come cTz + ay2 + bz2, con x, y e z interi anche nulli:

  • [ 1, 1, 1 ],

  • [ 1, 1, 2 ],

  • [ 1, 1, 3 ],

  • [ 1, 1, 4 ],

  • [ 1, 1, 8 ],

  • [ 1, 2, 2 ],

  • [ 1, 2, 4 ],

  • [ 2, 1, 1 ].

  • [ 2, 1, 2 ],

  • [ 4, 1, 2 ],

 

Per altre rappresentazioni degli interi tramite somme di numeri triangolari e poligonali, v. numeri poligonali.

 

Ogni intero positivo si può esprimere come somma di un quadrato, un quadrato dispari e un numero triangolare (B.K. Oh e Zhi-Wei Sun, 2009).

 

Ogni intero positivo si può esprimere come somma di un quadrato pari, un quadrato dispari e un numero triangolare, a meno che sia un numero triangolare Tn, e tutti i fattori primi di 2n + 1 siano della forma 4k + 1 (Zhi-Wei Sun, 2007).

 

Un numero triangolare Tn non è esprimibile come somma di due quadrati dispari e un numero triangolare se e solo se 2n + 1 è un primo della forma 4k + 3 (B.K. Ok e Zhi-Wei Sun, 2009).

 

Nel 2010 Ben Kane e Zhi-Wei Sun dimostrarono che alcune espressioni della forma aTx + bTy + cTz, con x, y e z interi anche nulli, permettono di rappresentare tutti gli interi positivi, tranne un numero finito di eccezioni. La tabella seguente riporta alcuni dei risultati dei due matematici (le eccezioni riportate sono quelle note, non è stato dimostrato che non ve ne siano altre).

Espressione

Eccezioni

4Tx + 3Ty + 2Tz

1, 8, 31

5Tx + 2Ty + 2Tz

1, 3, 10, 16, 28, 43, 46, 85, 169, 175, 211, 223

5Tx + 4Ty + Tz

2

6Tx + 2Ty + Tz

4, 50

9Tx + 2Ty + Tz

4, 46

10Tx + Ty + Tz

5, 8

11Tx + 2Ty + Tz

4, 25

13Tx + Ty + Tz

5, 8, 32, 53

22Tx + 2Ty + Tz

4, 11, 14, 19, 46, 54

 

Nel 2010 Ben Kane e Zhi-Wei Sun dimostrarono che alcune espressioni della forma ax2 + bTy + cTz, con x, y e z interi anche nulli, permettono di rappresentare tutti gli interi positivi, tranne un numero finito di eccezioni. La tabella seguente riporta alcuni dei risultati dei due matematici, incluse le 13 combinazioni con a + b + c non superiore a 10 (le eccezioni riportate sono quelle note, non è stato dimostrato che non ve ne siano altre).

Espressione

Eccezioni

x2 + 4Ty + 3Tz

2, 6, 80

x2 + 9Ty + Tz

8, 47

x2 + 10Ty + 2Tz

5, 8

x2 + 11Ty + Tz

8

x2 + 12Ty + Tz

8, 20

x2 + 13Ty + 2Tz

5, 8, 32, 53

2x2 + 3Ty + 2Tz

1, 16

2x2 + 5Ty + Tz

4

2x2 + 5Ty + 4Tz

1, 3, 10, 16, 28, 43, 46, 85, 169, 175, 211, 223

3x2 + 4Ty + 2Tz

1, 8, 11, 25

3x2 + 5Ty + Tz

2, 7

4x2 + 3Ty + Tz

2, 11, 27, 38, 86, 93, 188, 323

4x2 + 4Ty + Tz

2, 108

5x2 + Ty + Tz

19

5x2 + 2Ty + 2Tz

1, 3, 10, 15, 16, 21, 33, 39, 43, 66, 108, 109, 111, 126, 153, 195, 339, 1359

5x2 + 3Ty + 2Tz

1, 4, 13, 19, 27, 46, 73, 97, 111, 123, 151, 168

5x2 + 4Ty + Tz

2, 16, 31

6x2 + 2Ty + Tz

4

8x2 + Ty + Tz

5, 40, 217

9x2 + 2Ty + Tz

4

11x2 + 2Ty + Tz

4, 25, 94, 123

 

Nel 2010 Ben Kane e Zhi-Wei Sun dimostrarono che alcune espressioni della forma ax2 + by2 + cTz, con x, y e z interi anche nulli, permettono di rappresentare tutti gli interi positivi, tranne un numero finito di eccezioni. La tabella seguente riporta alcuni dei risultati dei due matematici, incluse le 15 combinazioni con a + b + c non superiore a 10 (le eccezioni riportate sono quelle note, non è stato dimostrato che non ve ne siano altre).

Espressione

Eccezioni

x2 + y2 + 5Tz

3, 11, 12, 27, 129, 138, 273

x2 + 2y2 + 3Tz

23

x2 + 2y2 + 6Tz

5, 13, 46, 161

x2 + 4y2 + 5Tz

2, 3, 7, 11, 12, 26, 27, 33, 48, 74, 93, 108, 129, 138, 161, 182, 264, 267, 273, 351, 357, 522, 639, 1062, 2352

x2 + 5y2 + 2Tz

19

x2 + 5y2 + 3Tz

2, 11, 26, 37, 40, 53, 62, 142, 220, 425, 692

x2 + 6y2 + Tz

47

x2 + y2 + 10Tz

3, 6, 7, 21, 22, 24, 33, 54, 57, 87, 93, 171, 258, 276, 339, 351, 423, 447, 546

2x2 + y2 + 11Tz

5, 7, 10, 21, 26, 31, 40, 46, 53, 56, 63, 80, 95, 103, 221, 271, 481, 665, 985

2x2 + y2 + 12Tz

5, 7, 10, 26, 35, 65, 92, 127, 322

2x2 + 2y2 + 5Tz

1, 3, 6, 11, 12, 14, 22, 24, 27, 28, 29, 42, 43, 44, 53, 59, 61, 71, 78, 81, 92, 96, 99, 117, 126, 129, 138, 168, 171, 189, 236, 263, 266, 273, 281, 312, 359, 383, 417, 449, 456, 546, 558, 579, 609, 708, 1034, 1221, 1368, 1548, 1566, 1743, 1842, 2406, 2748

2x2 + 2y2 + 13Tz

1, 3, 5, 6, 7, 9, 11, 12, 14, 19, 22, 24, 25, 27, 28, 30, 35, 37, 38, 42, 44, 46, 48, 51, 54, 56, 60, 61, 62, 66, 67, 69, 70, 76, 83, 84, 92, 99, 101, 102, 105, 108, 109, 115, 120, 123, 124, 125, 126, 127, 131, 133, 147, 151, 153, 154, 163, 165, 171, 172, 174, 179, 181, 186, 189, 190, 192, 216, 223, 237, 243, 249, 254, 261, 262, 264, 268, 270, 279, 282, 284, 297, 302, 315, 316, 318, 321, 336, 344, 349, 354, 358, 361, 378, 381, 387, 393, 408, 411, 412, 415, 430, 441, 447, 456, 457, 459, 460, 461, 474, 496, 498, 506, 511, 531, 537, 549, 552, 556, 570, 573, 602, 607, 627, 655, 671, 672, 681, 682, 696, 699, 703, 727, 732, 736, 748, 762, 799, 809, 812, 825, 826, 834, 840, 844, 867, 946, 951, 963, 966, 969, 984, 991, 1008, 1017, 1026, 1033, 1047, 1059, 1065, 1068, 1074, 1087, 1113, 1126, 1128, 1141, 1200, 1221, 1242, 1266, 1267, 1272, 1275, 1279, 1337, 1362, 1416, 1428, 1449, 1537, 1540, 1572, 1611, 1623, 1656, 1707, 1728, 1806, 1827, 1851, 1992, 2016, 2076, 2121, 2142, 2202, 2244, 2356, 2363, 2427, 2475, 2541, 2806, 2811, 2829, 2869, 3009, 3012, 3069, 3142, 3171, 3261, 3346, 3597, 3717, 3849, 3927, 4005, 4032, 4248, 4296, 4337, 4428, 4519, 4561, 4584, 4642, 4722, 4731, 4734, 4983, 5016, 5271, 5569, 5604, 5886, 6171, 6712, 6861, 7812, 8847, 9136, 9177, 10191, 10297, 10602, 13209, 16962, 17829, 18294, 18801, 22176

2x2 + 3y2 + 2Tz

1, 19, 43, 94

2x2 + 3y2 + 5Tz

1, 4, 6, 9, 22, 24, 28, 31, 39, 43, 46, 54, 69, 73, 76, 91, 97, 111, 118, 124, 139, 144, 186, 187, 214, 216, 235, 282, 349, 361, 379, 412, 427, 598, 619, 741, 769, 846, 933

2x2 + 4y2 + Tz

20

2x2 + 4y2 + 3Tz

1, 10, 14, 23, 28, 29, 55, 58, 60, 70, 115, 119, 125, 188, 193, 314, 385, 518, 1190, 1843, 3185

2x2 + 5y2 + Tz

4, 27

2x2 + 5y2 + 4Tz

1, 3, 10, 15, 16, 21, 33, 39, 43, 66, 108, 109, 111, 126, 153, 195, 339, 1359

3x2 + 4y2 + Tz

2, 11, 23, 50, 116, 135, 138

4x2 + y2 + 10Tz

2, 3, 6, 7, 12, 21, 22, 24, 28, 33, 44, 48, 54, 56, 57, 58, 84, 86, 87, 88, 93, 106, 118, 122, 142, 156, 162, 171, 184, 192, 198, 234, 252, 258, 276, 336, 339, 342, 351, 378, 423, 447, 472, 526, 532, 546, 562, 624, 718, 766, 834, 898, 912, 1092, 1116, 1158, 1218, 1416, 2068, 2442, 2736, 3096, 3132, 3486, 3684, 4812, 5496

4x2 + 4y2 + Tz

2, 12, 13, 24, 27, 34, 54, 84, 112, 133, 162, 234, 237, 279, 342, 399, 652, 834, 864

4x2 + 2y2 + 9Tz

1, 3, 5, 7, 10, 14, 19, 20, 23, 26, 28, 30, 37, 40, 42, 46, 52, 55, 67, 69, 74, 79, 80, 83, 84, 87, 89, 101, 110, 116, 119, 121, 131, 133, 148, 149, 160, 165, 170, 174, 180, 184, 202, 210, 212, 215, 229, 238, 244, 247, 259, 293, 298, 308, 314, 343, 345, 357, 373, 375, 376, 433, 436, 485, 532, 554, 564, 579, 622, 625, 686, 707, 727, 782, 817, 824, 832, 842, 884, 899, 942, 1003, 1064, 1129, 1155, 1334, 1554, 1702, 2189, 2470, 2557, 3570, 3691, 5529, 6554, 9555

5x2 + y2 + 12Tz

5, 7, 10, 26, 35, 65, 92, 127, 322

6x2 + y2 + 4Tz

2, 3, 17, 23, 38, 51, 86, 188

8x2 + y2 + 3Tz

2, 5, 6, 14, 23, 29, 37, 40, 56, 65, 83, 110, 123, 188, 269, 338, 413, 499

11x2 + y2 + Tz

8, 38, 348

12x2 + y2 + Tz

8, 20, 146, 275

 

Nel 2010 Ben Kane e Zhi-Wei Sun dimostrarono che:

  • tutti gli interi abbastanza grandi si possono esprimere come Tx + Ty + aTz con a della forma 2nm con m dispari e n diverso da 3 se e solo se n è pari o minore di 5 e tutti i fattori primi dispari di a sono della forma 4k + 1.

  • tutti gli interi abbastanza grandi si possono esprimere come Tx + 2Ty + aTz con a della forma 2nm con m dispari se e solo se tutti i fattori primi dispari di a sono della forma 8k + 1 o 8k + 3 e a è della forma 8k + 1 oppure n è dispari o minore di 4.

  • tutti gli interi abbastanza grandi si possono esprimere come 2n(Tx + 2Ty) + aTz con n diverso da 2 se e solo se n è 1 e tutti i fattori primi dispari di a sono della forma 4k + 1;

  • tutti gli interi abbastanza grandi si possono esprimere come ax2 + Ty + Tz se e solo se tutti i fattori primi dispari di a sono della forma 4k + 1;

  • tutti gli interi abbastanza grandi si possono esprimere come ax2 + 2Ty + Tz se e solo se tutti i fattori primi dispari di a sono della forma 8k + 1 o 8k + 3;

  • tutti gli interi abbastanza grandi si possono esprimere come ax2 + 2Ty + 2Tz se e solo se tutti i fattori primi dispari di a sono della forma 4k + 1;

  • tutti gli interi abbastanza grandi si possono esprimere come x2 + 2Ty + aTz con a della forma 2nm con m dispari e n diverso da 3 se e solo se n è pari o minore di 5 e tutti i fattori primi dispari di a sono della forma 4k + 1;

  • tutti gli interi abbastanza grandi si possono esprimere come ax2 + 4Ty + Tz se e solo se tutti i fattori primi dispari di a sono della forma 4k + 1;

  • se tutti i fattori primi dispari di a sono della forma 8k + 1 o 8k + 3 e a = 2m(2k + 1) con m dispari o minore di 4 oppure a = 2m(8k + 3), tutti gli interi abbastanza grandi si possono esprimere come x2 + Ty + aTz;

  • tutti gli interi abbastanza grandi si possono esprimere come ax2 + y2 + Tz se e solo se tutti i fattori primi dispari di a sono della forma 8k + 1 o 8k + 3;

  • tutti gli interi abbastanza grandi si possono esprimere come x2 + y2 + aTz se e solo se a non è multiplo di 4 e tutti i fattori primi dispari di a sono della forma 4k + 1;

  • tutti gli interi abbastanza grandi si possono esprimere come 2x2 + y2 + aTz se e solo se a non è multiplo di 8 e tutti i fattori primi dispari di a sono della forma 8k + 1 o 8k + 3;

  • tutti gli interi abbastanza grandi si possono esprimere come ax2 + y2 + 2Tz se e solo se tutti i fattori primi dispari di a sono della forma 4k + 1;

  • tutti gli interi abbastanza grandi si possono esprimere come ax2 + 2y2 + Tz se e solo se tutti i fattori primi dispari di a sono della forma 4k + 1;

  • tutti gli interi abbastanza grandi si possono esprimere come ax2 + 2y2 + 2Tz se e solo se tutti i fattori primi dispari di a sono della forma 8k + 1 o 8k + 3;

  • tutti gli interi abbastanza grandi si possono esprimere come ax2 + 2y2 + 4Tz se e solo se tutti i fattori primi dispari di a sono della forma 4k + 1;

  • tutti gli interi abbastanza grandi si possono esprimere come ax2 + 4y2 + 2Tz se e solo se tutti i fattori primi dispari di a sono della forma 4k + 1 e a è della forma 8k + 1;

  • tutti gli interi abbastanza grandi si possono esprimere come 22nx2 + y2 + 2aTz con n fissato se e solo se a è dispari e non è multiplo di quadrati e –1 è un residuo quadratico modulo a;

  • tutti gli interi abbastanza grandi si possono esprimere come 22nx2 + y2 + aTz con n fissato e a dispari se e solo se –1 è un residuo quadratico modulo a;

  • tutti gli interi abbastanza grandi si possono esprimere come 22n + 1x2 + y2 + aTz con n fissato e a dispari se e solo se –2 è un residuo quadratico modulo a e a non è multiplo di quadrati, se è della forma 8k + 1;

  • tutti gli interi abbastanza grandi si possono esprimere come 22n + 1x2 + y2 + 2aTz con n fissato se e solo se a è dispari e –2 è un residuo quadratico modulo a;

  • tutti gli interi abbastanza grandi si possono esprimere come 2nx2 + 2my2 + aTz con n fissato se e solo se tutti i fattori primi di a sono della forma 4k + 1, se m e n hanno la stessa parità, se sono della forma 8k + 1 o 8k + 3 altrimenti e inoltre a non è multiplo di quadrati oppure n è pari e m è 1;

  • tutti gli interi abbastanza grandi si possono esprimere come 2n(x2 + Ty) + aTz con n fissato e diverso da 3 o 4 se e solo se n è 1 o 2 e tutti i fattori primi dispari di a sono della forma 8k + 1 o 8k + 3;

  • infiniti interi non si possono esprimere come 8(x2 + Ty) + (8a + 1)Tz;

  • tutti gli interi abbastanza grandi si possono esprimere come 2n(x2 + 2Ty) + aTz con n fissato e diverso da 2 se e solo se n è 1 e tutti i fattori primi dispari di a sono della forma 4k + 1;

 

Nel 1997 Ken Ono e K. Soundararajan dimostrarono che, supponendo vera una versione generale dell’ipotesi di Riemann, ogni intero positivo si può rappresentare come 2x2 + 5y2 + Tz, tranne: 1, 3, 10, 15, 16, 21, 33, 39, 43, 66, 108, 109, 111, 126, 153, 195, 339 e 1359.

 

Ogni intero positivo si può esprimere come somma di numeri triangolari distinti, tranne: 2, 5, 8, 12, 23 e 33.

 

J.A. Eulero, figlio di L. Eulero, dimostrò nel 1772 che ogni intero positivo si può esprimere come somma di 12 quadrati di numeri triangolari. Pollock dimostrò nel 1851 che ne bastano 11.

Non si può far di meglio, perché ne servono 11 per rappresentare 35: 35 = 3 • 32 + 8 • 12.

 

Ogni intero è rappresentabile come differenza di numeri triangolari, perché n = TnTn – 1; M.A. Nyblom dimostrò nel 1999 che il numero di rappresentazioni di un intero n come differenza di numeri triangolari è uguale al numero di divisori dispari di n e di conseguenza gli unici interi rappresentabili solo come differenza di numeri triangolari consecutivi sono le potenze di 2 (v. numeri trapezoidali).

 

Zhi-Wei Sun avanzò nel 2009 la congettura che l’unico numero non esprimibile come somma di un primo, eventualmente nullo, e un numero triangolare sia 216 e che ogni numero dispari sia rappresentabile come somma di un numero primo e del doppio di un numero triangolare (v. congetture di Zhi-Wei Sun sulla rappresentazione dei numeri naturali come somme).

Bibliografia

  • De Koninck, Jean-Marie;  Those Fascinating Numbers, American Mathematical Society, 2009 -

    Un'inesauribile miniera di notizie sugli interi, informazioni e spunti per approfondimenti.

  • Gardner, Martin;  The Colossal Book of Mathematics, New York, W.W. Norton & Company, 2001.
  • Honsberger, Ross;  Ingenuity in Mathematics, The Mathematical Association of America, 1970.
  • Majumdar, A.A.K.;  Wandering in the World of Smarandache Numbers, InProQuest, 2010 -

    Il libro contiene alcune dimostrazioni errate o lacunose.

  • Roberts, Joe;  The Lure of the Integers, The Mathematical Association of America, 1992 -

    Una miniera di informazioni sugli interi.

  • Sierpiński, Wacław Franciszek;  Elementary Theory of Numbers, Amsterdam, North-Holland, 1988.
  • Wells, David;  The Penguin Dictionary of Curious and Interesting Numbers, Londra, Penguin Books, 1986.

Contattami

Potete contattarmi al seguente indirizzo bitman[at]bitman.name per suggerimenti o segnalazioni d'errori relativi a questo articolo.